Monday, January 21, 2013


8th century gamma ray burst irradiated the Earth, study finds

January 21, 2013

A nearby short duration gamma-ray burst may be the cause of an intense blast of high-energy radiation that hit the Earth in the 8th century, according to new research led by astronomers Valeri Hambaryan and Ralph Neuhӓuser. The two scientists, based at the Astrophysics Institute of the University of Jena in Germany, publish their results in the journal Monthly Notices of the Royal Astronomical Society. 

In 2012 scientist Fusa Miyake announced the detection of high levels of the isotope Carbon-14 and Beryllium-10 in tree rings formed in 775 CE, suggesting that a burst of radiation struck the Earth in the year 774 or 775. Carbon-14 and Beryllium-10 form when radiation from space collides with nitrogen atoms, which then decay to these heavier forms of carbon and beryllium. The earlier research ruled out the nearby explosion of a massive star (a supernova) as nothing was recorded in observations at the time and no remnant has been found.

Prof. Miyake also considered whether a solar flare could have been responsible, but these are not powerful enough to cause the observed excess of carbon-14. Large flares are likely to be accompanied by ejections of material from the Sun's corona, leading to vivid displays of the northern and southern lights (aurorae), but again no historical records suggest these took place.

Following this announcement, researchers pointed to an entry in the Anglo-Saxon Chronicle that describes a 'red crucifix' seen after sunset and suggested this might be a supernova. But this dates from 776, too late to account for the carbon-14 data and still does not explain why no remnant has been detected.

Drs. Hambaryan and Neuhӓuser have another explanation, consistent with both the carbon-14 measurements and the absence of any recorded events in the sky. They suggest that two compact stellar remnants, i.e. black holes, neutron stars or white dwarfs, collided and merged together. When this happens, some energy is released in the form of gamma rays, the most energetic part of the electromagnetic spectrum that includes visible light.

An artist's impression of the merger of two neutron stars. Short duration gamma-ray bursts are thought to be caused by the merger of some combination of white dwarfs, neutron stars or black holes. Theory suggests that they are short lived as there is little dust and gas to fuel an 'afterglow'. Credit: Part of an image from NASA / Dana Berry.

Read more at : http://phys.org/news/2013-01-8th-century-gamma-ray-irradiated.html
8th century gamma ray burst irradiated the Earth, study finds

January 21, 2013

A nearby short duration gamma-ray burst may be the cause of an intense blast of high-energy radiation that hit the Earth in the 8th century, according to new research led by astronomers Valeri Hambaryan and Ralph Neuhӓuser. The two scientists, based at the Astrophysics Institute of the University of Jena in Germany, publish their results in the journal Monthly Notices of the Royal Astronomical Society. 

In 2012 scientist Fusa Miyake announced the detection of high levels of the isotope Carbon-14 and Beryllium-10 in tree rings formed in 775 CE, suggesting that a burst of radiation struck the Earth in the year 774 or 775. Carbon-14 and Beryllium-10 form when radiation from space collides with nitrogen atoms, which then decay to these heavier forms of carbon and beryllium. The earlier research ruled out the nearby explosion of a massive star (a supernova) as nothing was recorded in observations at the time and no remnant has been found. 

Prof. Miyake also considered whether a solar flare could have been responsible, but these are not powerful enough to cause the observed excess of carbon-14. Large flares are likely to be accompanied by ejections of material from the Sun's corona, leading to vivid displays of the northern and southern lights (aurorae), but again no historical records suggest these took place. 

Following this announcement, researchers pointed to an entry in the Anglo-Saxon Chronicle that describes a 'red crucifix' seen after sunset and suggested this might be a supernova. But this dates from 776, too late to account for the carbon-14 data and still does not explain why no remnant has been detected. 

Drs. Hambaryan and Neuhӓuser have another explanation, consistent with both the carbon-14 measurements and the absence of any recorded events in the sky. They suggest that two compact stellar remnants, i.e. black holes, neutron stars or white dwarfs, collided and merged together. When this happens, some energy is released in the form of gamma rays, the most energetic part of the electromagnetic spectrum that includes visible light.

An artist's impression of the merger of two neutron stars. Short duration gamma-ray bursts are thought to be caused by the merger of some combination of white dwarfs, neutron stars or black holes. Theory suggests that they are short lived as there is little dust and gas to fuel an 'afterglow'. Credit: Part of an image from NASA / Dana Berry. 

Read more at : http://phys.org/news/2013-01-8th-century-gamma-ray-irradiated.html

No comments:

Post a Comment