Tuesday, November 12, 2013


Incredible Technology: How Future Space Missions May Hunt for Alien Planets




Transiting Exoplanet Survey Satellite (TESS)
Following a three-year competition, NASA recently selected the Transiting Exoplanet Survey Satellite (TESS) project at MIT for a planned launch in 2017.
Credit: MIT KAVLI Institute for Astrophysics and Space Research
NASA's Kepler space telescope revolutionized the study of alien worlds after launching in 2009, and a number of other missions now stand poised to carry the burgeoning field into the future.
Over the next decade, NASA and the European Space Agency (ESA) aim to launch a handful of spacecraft that should discover thousands of additionalexoplanets and characterize some of the most promising — the most apparently Earthlike — new finds in detail.
These future missions are all following in the footsteps of Kepler, whose observations have revealed that the Milky Way galaxy is jam-packed with alien planets. The instrument has spotted more than 3,500 planet candidates to date; just 167 of them have been confirmed by follow-up observations so far, but mission scientists expect about 90 percent will end up being the real deal. [Gallery: A World of Kepler Planets]
Kepler's original planet-hunting activities came to an end this past May when the second of its four orientation-maintaining reaction wheels failed, robbing the spacecraft of its ultra-precise pointing ability. But the instrument may continue its planet search in a modified and limited fashion, as part of a possible future mission dubbed K2.
NASA is expected to make a final decision about K2, and Kepler's ultimate fate, around the middle of next year. By then, the first member of the exoplanet new wave will already be aloft — Europe's Gaia mission.
An artist's illustration of ESA's Gaia space observatory in orbit.
An artist's illustration of ESA's Gaia space observatory in orbit.
Credit: ESA






Gaia: The billion-star surveyor
ESA's Gaia spacecraft is slated to blast off from French Guiana next month; its launch window extends from Dec. 17 through Jan. 5.
Gaia will head to a gravitationally stable spot about 900,000 miles (1.5 million kilometers) from Earth called the sun-Earth Lagrange Point 2. Over the next five years, the spacecraft will repeatedly measure the position, movement and brightness changes of more than 1 billion Milky Way stars — about 1 percent of the galaxy's total.
"This huge stellar census will provide the data needed to tackle an enormous range of important problems related to the origin, structure and evolutionary history of our galaxy," ESA officials write in a description of the Gaia mission. [7 Ways to Discover Alien Planets]
Exoplanet science should be one of the fields that benefits. The Gaia mission, whose total cost is 740 million euros (about $990 million), could potentially detect tens of thousands of new planetary systems, researchers say.
Artist impression of Cheops
Credit: University of Bern



































Cheops: A follow-up machine
ESA will likely launch another exoplanet mission, called Cheops (short forCHaracterizing ExOPlanets Satellite), four years after Gaia gets off the ground.
Like Kepler, Cheops will watch for exoplanet "transits," gathering data when alien worlds cross the face of their parent stars from the instrument's perspective. But the similarities mostly end there. While Kepler stared at more than 150,000 stars simultaneously, Cheops will target one star at a time. And its chief aim is the follow-up study of known exoplanets, rather than the discovery of previously unknown worlds.
"Knowing when to look, and at which star, will make Cheops extremely efficient at providing first-step characterization of low-mass exoplanets by measuring accurate radii and densities," David Ehrenreich, of the University of Geneva, said Nov. 6 during a presentation at the second Kepler Science Conference at NASA's Ames Research Center in Moffett Field, Calif.
Another key goal of Cheops, Ehrenreich added, is "collecting the 'golden targets' for future in-depth characterization by, for instance, the James Webb Space Telescope."  
Cheops' total cost is about $134 million (100 milllion Euros), Ehrenreich said. Formal adoption of the mission is expected in the next few months, with launch targeted for late 2017.
Alien Planet Quiz: Are You an Exoplanet Expert?
Astronomers have confirmed more than 800 planets beyond our own solar system, and the discoveries keep rolling in. How much do you know about these exotic worlds?
Artist's conception of alien planets Kepler-36b and c
0 of 10 questions complete
The Transiting Exoplanet Survey Satellite
NASA is developing its own mission for launch in 2017. The agency'sTransiting Exoplanet Survey Satellite, or TESS, aims to look for planets crossing the face of about 500,000 stars during its planned two-year operational life.
While Kepler scanned stars 1,000 or so light-years away, the $200 million TESS mission will look much closer to home. It will focus on stars within 100 light-years of Earth, with the goal of finding planets that will be easier to study and characterize with future instruments such as NASA's James Webb Space Telescope (JWST).
And TESS should discover plenty of new worlds. Team members expect to find about 315 the size of Earth or a little larger, 710 planets a bit smaller than Neptune, 1000 Neptune-like worlds and 660 Jupiter analogs, mission principal investigator George Ricker of MIT said Nov. 6 at the Kepler Science Conference.
"It's really a bridge to the future," Ricker said of TESS. "We're really, obviously, following on from Kepler. And because of the way in which there's a focus on providing targets that are going to be optimal in place for the continuous viewing zone for JWST, there's clearly going to be a linkage between providing information that'll be useful to that mission."
The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope.
The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope, and it will be almost three times the size of Hubble. JWST has been designed to work best at infrared wavelengths. This will allow it to study the very distant Universe, looking for the first stars and galaxies that ever emerged.
Credit: ESA
Hubble's long-awaited successor: JWST
Researchers have high hopes for JWST, the $8.8 billion infrared-optimized telescope that NASA hopes to launch toward the end of 2018.
Scientists plan to point JWST at the most promising and intriguing exoplanets that have been discovered in Earth's cosmic neck of the woods, using the powerful instrument to scan these worlds' atmospheres for water vapor and gases that may have been produced by living organisms, such as oxygen, nitrous oxide and methane. [Photos of the James Webb Space Telescope]
JWST should also make contributions in many other arenas, NASA officials say, shedding light on the early history of the universe and improving researchers' understanding of the formation and evolution of stars, galaxies and planetary systems.
WFIRST-AFTA
The outlook for space-based exoplanet science gets a little cloudy beyond JWST, but both NASA and ESA have some potential projects in the works.
NASA, for example, is working on a $1.6 billion observatory called the Wide-Field Infrared Survey Telescope. In 2010, the U.S. National Research Council deemed WFIRST the top priority for the next decade of astronomical research.
The current mission design, called WFIRST-AFTA (short for Astrophysics Focused Telescope Assets), calls for the observatory to incorporate one of two spy-satellite telescopes given to NASA by the U.S. National Reconnaissance Office in 2011.
The donated scopes are similar in size and appearance to NASA's iconicHubble Space Telescope, sporting 8-foot-wide (2.4 meters) primary mirrors. The instruments are far from flight-ready spacecraft, however; they're basically just primary and secondary mirrors with associated support structures.
WFIRST-AFTA would probe the nature of mysterious dark energy and hunt for and study alien planets using two techniques: direct imaging and gravitational microlensing. In this latter method, astronomers watch what happens when a massive object passes in front of a star; the closer object's gravitational field bends and magnifies the star's light, acting like a lens.
The mission could find thousands of exoplanets using microlensing alone, said Matthew Penny of Ohio State University. Current plans call for WFIRST-AFTA to launch in 2023 or thereabouts, but the proposed mission remains in a sort of limbo at the moment, he added.
"There's going to be no funding for [other] large missions until JWST is launched," he said Nov. 6 at the Kepler Science Conference. "After that, NASA will have to ask Congress, I think, to fund the next large mission."
Should we send a probe to study the newfound planet in Alpha Centauri up close?
Plato
ESA may launch its own large-scale exoplanet mission at about the same time WFIRST-AFTA gets off the ground. The Europeans are developing a project called Plato (PLAnetary Transits and Oscillations of stars), with a possible liftoff in the 2022-2024 timeframe.
Like Kepler, Cheops and TESS, Plato will use the transit technique. The mission's main goal is to find and characterize large numbers of nearby planetary systems, getting accurate sizes and masses of alien worlds — many of which may lie in their host star's habitable zone, that just-right range of distances where liquid water can exist on a planet's surface.
"We want to completely characterize low-mass planets out to the habitable zone, being able to know about the internal composition, the density, the age of the system," Stephane Udry of the University of Geneva said Nov. 6 at the Kepler Science Conference.

Plato is one of five proposed "medium-class" missions — whose cost to ESA is capped at 470 million euros, or about $630 million — the agency is considering for the 2022-2024 launch slot. ESA will select one of these five in February 2014, officials have said.

Friday, November 1, 2013

COMET ISON 


Impressive description for learning.

Thursday, October 31, 2013

Saturn's Moon Titan - A Place Like Home

This video is for entertainment purposes only and is not for profit of any kind. I did not make this film, i am uploading it for educational and entertainment purposes. This is 100% legal under the copyright law. The audio in this clip is for entertainment purposes only. I do not own the audio in this video. I am not breaking any copyright laws therefor the audio in this video is legal.
This documentary was made, produced and is completely owned by BBC. I do not own anything in this video. This video is only for educational purposes and I am not claiming this video as my own in any way.

Wednesday, October 30, 2013

Life in The Universe



This documentary was made, produced and is completely owned by Discovery Channel. I do not own anything in this video. This video is only for educational purposes and I am not claiming this video as my own in any way

Monday, October 28, 2013

Sunday, October 27, 2013

National Geographic -- Megastructures: Italian Superlink


NatGeo Megastructures: "Italian Superlink" (March 2013). Toto Costruzioni Generali crew working on "Martina", world's largest EPBM, to excavate Sparvo Gallery, Central Italy. The U-turn challenge, overcome by a revolutionary application of hovercraft technology.

DNA Mysteries - The Search For Adam - National Geographic Documentary




Thursday, October 24, 2013

The Human Brain



Complex and deeply mysterious, the human brain is an odyssey unto itself. Take this journey into the inner workings of the mind.

Astrophysics : Documentary on Space, Time, and the Universe


This documentary as well as the rest of these documentaries shown here relate to important times and figures in history, historic places and people, archaeology, science, conspiracy theories, and education. 
The Topics of these video documentaries are varied and cover ancient history, Rome, Greece, Egypt, science, technology, nature, planet earth, the solar system, the universe, World wars, battles, education, biographies, television, archaeology, Illuminati, Area 51, serial killers, paranormal, supernatural, cults, government cover-ups, the law and legal matters, news and current events, corruption, martial arts, space, aliens, ufos, conspiracy theories, Annunaki, Nibiru, Nephilim, satanic rituals, religion, strange phenomenon, origins of Mankind, monsters

Dark Matter: the Undetectable Mass 


A look at the theory of dark matter -- the undetectable mass thought to make up 96% of the universe, and dark energy -- the unseen force that is expanding the universe. Physicists use the latest cutting-edge technology and conduct groundbreaking experiments in an attempt to discover more about these mysterious forces. 

In astronomy and cosmology, dark matter is a type of matter hypothesized to account for a large part of the total mass in the universe. Dark matter cannot be seen directly with telescopes; evidently it neither emits nor absorbs light or other electromagnetic radiation at any significant level. Instead, its existence and properties are inferred from its gravitational effects on visible matter, radiation, and the large-scale structure of the universe. According to the Planck mission team, and based on the standard model of cosmology, the total mass--energy of the universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. Thus, dark matter is estimated to constitute 84.5% of the total matter in the universe and 26.8% of the total content of the universe.

Dark matter came to the attention of astrophysicists due to discrepancies between the mass of large astronomical objects determined from their gravitational effects and the mass calculated from the "luminous matter" they contain: stars, gas, and dust. It was first postulated by Jan Oort in 1932 to account for the orbital velocities of stars in the Milky Way and by Fritz Zwicky in 1933 to account for evidence of "missing mass" in the orbital velocities of galaxies in clusters. Subsequently, many other observations have indicated the presence of dark matter in the universe, including the rotational speeds of galaxies by Vera Rubin, in the 1960s--1970s, gravitational lensing of background objects by galaxy clusters such as the Bullet Cluster, the temperature distribution of hot gas in galaxies and clusters of galaxies, and more recently the pattern of anisotropies in the cosmic microwave background. According to consensus among cosmologists, dark matter is composed primarily of a not yet characterized type of subatomic particle. The search for this particle, by a variety of means, is one of the major efforts in particle physics today.

Although the existence of dark matter is generally accepted by the mainstream scientific community, there is no generally agreed direct detection of it. Other theories, including MOND and TeVeS, are some alternative theories of gravity proposed to try to explain the anomalies for which dark matter is intended to account.

In physical cosmology and astronomy, dark energy is a hypothetical form of energy that permeates all of space and tends to accelerate the expansion of the universe. Dark energy is the most accepted hypothesis to explain observations since the 1990s that indicate that the universe is expanding at an accelerating rate. According to the Planck mission team, and based on the standard model of cosmology, the total mass--energy of the universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy.

Two proposed forms for dark energy are the cosmological constant, a constant energy density filling space homogeneously, and scalar fields such as quintessence or moduli, dynamic quantities whose energy density can vary in time and space. Contributions from scalar fields that are constant in space are usually also included in the cosmological constant. The cosmological constant is physically equivalent to vacuum energy. Scalar fields which do change in space can be difficult to distinguish from a cosmological constant because the change may be extremely slow.

High-precision measurements of the expansion of the universe are required to understand how the expansion rate changes over time. In general relativity, the evolution of the expansion rate is parameterized by the cosmological equation of state (the relationship between temperature, pressure, and combined matter, energy, and vacuum energy density for any region of space). Measuring the equation of state for dark energy is one of the biggest efforts in observational cosmology today.

Adding the cosmological constant to cosmology's standard FLRW metric leads to the Lambda-CDM model, which has been referred to as the "standard model" of cosmology because of its precise agreement with observations. Dark energy has been used as a crucial ingredient in a recent attempt to formulate a cyclic model for the universe.

THE M-THEORY/EXTENSION OF STRING THEORY - The Elegant Universe



The m theory - extension of string theory - the elegant universe (full documentary episode). thanks for watching.
history life discovery science technology tech learning education tlc national geographic nature earth planet channel universe bbc a&e space galaxy outer shuttle ship mars moon sun black hole nasa jupiter milky way solar system physics quantum particle time travel relativity einstein parallel dimension dimensions math mathematics.