Sunday, October 28, 2012

Newsprinter friendly page
Saturn’s visible storm
Saturn’s visible storm
After-effects of Saturn’s super storm shine on
 
25 October 2012
The heat-seeking capabilities of the international Cassini spacecraft and two ground-based telescopes have provided the first look at the aftermath of Saturn’s ‘Great Springtime Storm’. Concealed from the naked eye, a giant oval vortex is persisting long after the visible effects of the storm subsided.
 
The ground-based observations were made by the Very Large Telescope of the European Southern Observatory in Chile, and NASA’s Infrared Telescope Facility at the summit of Mauna Kea in Hawaii.
The vivid cloud structures that wreaked havoc across wide swathes of the mid-northern latitudes of Saturn’s atmosphere captured the imaginations of amateur and professional astronomers alike, from its first appearance in December 2010 through much of 2011.
But in new reports that focus on the temperatures, winds and composition of Saturn’s atmosphere, scientists find that the spectacular cloud displays were only part of the story.
Much of the associated activity took place beyond the reach of visible-light cameras, and the after-effects are still continuing today.  

Evolution of infrared hotspots in Saturn’s springtime storm 
 
 
“It’s the first time we’ve seen anything like it on any planet in the Solar System,” says Leigh Fletcher from the University of Oxford, UK, lead author of the Icarus paper.
“It’s extremely unusual, as we can only see the vortex at infrared wavelengths – we can’t tell that it is there simply by looking at the cloud cover.”
As the visible storm erupted in the roiling cloud deck of Saturn’s troposphere, waves of energy rippled hundreds of kilometres upwards, depositing their energy as two vast ‘beacons’ of hot air in the stratosphere.
The beacons were expected to cool down and dissipate, but by late April 2011 – by which time bright cloud material had encircled the entire planet – the hot spots had merged to create an enormous vortex that for a brief period exceeded even the size of Jupiter’s famous Great Red Spot.
Furthermore, the temperature of the vortex was far higher than expected, some 80ºC warmer than the surrounding atmosphere. At the same time, huge spikes in the amount of gases like ethylene and acetylene were detected.
 

Looking down on Saturn’s storm 
 
 
Much like the Great Red Spot, Saturn’s vortex also cuts off the atmosphere in its core from the surrounding environment, constraining its unique chemistry and high temperatures within the walls of the powerful winds whipping around the edge.
“But Jupiter’s vortex is embedded deep down in the turbulent ‘weather zone’, whereas the vast vortex on Saturn is higher up in the atmosphere where, normally, you wouldn’t expect anything like it to have formed,” says Dr Fletcher.
“Although there are parallels to be drawn between the two, the mechanisms by which they were formed and the length of time they are going to exist seem to be very different.”
Jupiter’s famous vortex has raged for at least 300 years, but after traversing the planet once every 120 days since May 2011, Saturn’s large beacon is cooling and shrinking. Scientists expect it to fade away completely by the end of 2013.
The question now remains as to whether Saturn’s storm-generating energy has been sapped or if there will be a repeat performance.
The outburst already caught observers by surprise by arriving during the planet’s northern hemisphere spring, years ahead of the predictably stormy summer season.
“The beauty is that Cassini will be operating until the Saturn system reaches its summer solstice in 2017, so if there is another global event like this, we’ll be there to see it,” says ESA’s Cassini project scientist Nicolas Altobelli.
 

Newsprinter friendly page
Saturn’s visible storm
Saturn’s visible storm
After-effects of Saturn’s super storm shine on
 
25 October 2012
The heat-seeking capabilities of the international Cassini spacecraft and two ground-based telescopes have provided the first look at the aftermath of Saturn’s ‘Great Springtime Storm’. Concealed from the naked eye, a giant oval vortex is persisting long after the visible effects of the storm subsided.

The ground-based observations were made by the Very Large Telescope of the European Southern Observatory in Chile, and NASA’s Infrared Telescope Facility at the summit of Mauna Kea in Hawaii.The vivid cloud structures that wreaked havoc across wide swathes of the mid-northern latitudes of Saturn’s atmosphere captured the imaginations of amateur and professional astronomers alike, from its first appearance in December 2010 through much of 2011.
But in new reports that focus on the temperatures, winds and composition of Saturn’s atmosphere, scientists find that the spectacular cloud displays were only part of the story.
Much of the associated activity took place beyond the reach of visible-light cameras, and the after-effects are still continuing today.  


Evolution of infrared hotspots in Saturn’s springtime storm
 

“It’s the first time we’ve seen anything like it on any planet in the Solar System,” says Leigh Fletcher from the University of Oxford, UK, lead author of the Icarus paper.“It’s extremely unusual, as we can only see the vortex at infrared wavelengths – we can’t tell that it is there simply by looking at the cloud cover.”
As the visible storm erupted in the roiling cloud deck of Saturn’s troposphere, waves of energy rippled hundreds of kilometres upwards, depositing their energy as two vast ‘beacons’ of hot air in the stratosphere.
The beacons were expected to cool down and dissipate, but by late April 2011 – by which time bright cloud material had encircled the entire planet – the hot spots had merged to create an enormous vortex that for a brief period exceeded even the size of Jupiter’s famous Great Red Spot.
Furthermore, the temperature of the vortex was far higher than expected, some 80ºC warmer than the surrounding atmosphere. At the same time, huge spikes in the amount of gases like ethylene and acetylene were detected.
 


Looking down on Saturn’s storm
 

Much like the Great Red Spot, Saturn’s vortex also cuts off the atmosphere in its core from the surrounding environment, constraining its unique chemistry and high temperatures within the walls of the powerful winds whipping around the edge.“But Jupiter’s vortex is embedded deep down in the turbulent ‘weather zone’, whereas the vast vortex on Saturn is higher up in the atmosphere where, normally, you wouldn’t expect anything like it to have formed,” says Dr Fletcher.
“Although there are parallels to be drawn between the two, the mechanisms by which they were formed and the length of time they are going to exist seem to be very different.”
Jupiter’s famous vortex has raged for at least 300 years, but after traversing the planet once every 120 days since May 2011, Saturn’s large beacon is cooling and shrinking. Scientists expect it to fade away completely by the end of 2013.
The question now remains as to whether Saturn’s storm-generating energy has been sapped or if there will be a repeat performance.
The outburst already caught observers by surprise by arriving during the planet’s northern hemisphere spring, years ahead of the predictably stormy summer season.
“The beauty is that Cassini will be operating until the Saturn system reaches its summer solstice in 2017, so if there is another global event like this, we’ll be there to see it,” says ESA’s Cassini project scientist Nicolas Altobelli.
 




printer friendly page

Saturn’s visible storm
Saturn’s visible storm
After-effects of Saturn’s super storm shine on
 
25 October 2012
The heat-seeking capabilities of the international Cassini spacecraft and two ground-based telescopes have provided the first look at the aftermath of Saturn’s ‘Great Springtime Storm’. Concealed from the naked eye, a giant oval vortex is persisting long after the visible effects of the storm subsided.

The ground-based observations were made by the Very Large Telescope of the European Southern Observatory in Chile, and NASA’s Infrared Telescope Facility at the summit of Mauna Kea in Hawaii.The vivid cloud structures that wreaked havoc across wide swathes of the mid-northern latitudes of Saturn’s atmosphere captured the imaginations of amateur and professional astronomers alike, from its first appearance in December 2010 through much of 2011.
But in new reports that focus on the temperatures, winds and composition of Saturn’s atmosphere, scientists find that the spectacular cloud displays were only part of the story.
Much of the associated activity took place beyond the reach of visible-light cameras, and the after-effects are still continuing today.  


Evolution of infrared hotspots in Saturn’s springtime storm
 

“It’s the first time we’ve seen anything like it on any planet in the Solar System,” says Leigh Fletcher from the University of Oxford, UK, lead author of the Icarus paper.“It’s extremely unusual, as we can only see the vortex at infrared wavelengths – we can’t tell that it is there simply by looking at the cloud cover.”
As the visible storm erupted in the roiling cloud deck of Saturn’s troposphere, waves of energy rippled hundreds of kilometres upwards, depositing their energy as two vast ‘beacons’ of hot air in the stratosphere.
The beacons were expected to cool down and dissipate, but by late April 2011 – by which time bright cloud material had encircled the entire planet – the hot spots had merged to create an enormous vortex that for a brief period exceeded even the size of Jupiter’s famous Great Red Spot.
Furthermore, the temperature of the vortex was far higher than expected, some 80ºC warmer than the surrounding atmosphere. At the same time, huge spikes in the amount of gases like ethylene and acetylene were detected.
 


Looking down on Saturn’s storm
 

Much like the Great Red Spot, Saturn’s vortex also cuts off the atmosphere in its core from the surrounding environment, constraining its unique chemistry and high temperatures within the walls of the powerful winds whipping around the edge.“But Jupiter’s vortex is embedded deep down in the turbulent ‘weather zone’, whereas the vast vortex on Saturn is higher up in the atmosphere where, normally, you wouldn’t expect anything like it to have formed,” says Dr Fletcher.
“Although there are parallels to be drawn between the two, the mechanisms by which they were formed and the length of time they are going to exist seem to be very different.”
Jupiter’s famous vortex has raged for at least 300 years, but after traversing the planet once every 120 days since May 2011, Saturn’s large beacon is cooling and shrinking. Scientists expect it to fade away completely by the end of 2013.
The question now remains as to whether Saturn’s storm-generating energy has been sapped or if there will be a repeat performance.
The outburst already caught observers by surprise by arriving during the planet’s northern hemisphere spring, years ahead of the predictably stormy summer season.
“The beauty is that Cassini will be operating until the Saturn system reaches its summer solstice in 2017, so if there is another global event like this, we’ll be there to see it,” says ESA’s Cassini project scientist Nicolas Altobelli.
 

Wednesday, October 24, 2012


NASA | Atomic Interferometry

Einstein predicted gravity waves in his general theory of relativity, but to date these ripples in the fabric of space-time have never been observed. Now a scientific research technique called Atomic Interferometry is trying to re-write the canon. In conjunction with researchers at Stanford University, scientists at NASA Goddard are developing a system to measure the faint gravitational vibrations generated by movement of massive objects in the universe. The scientific payoff could be important, helping better clarify key issues in our understanding of cosmology. But application payoff could be substantial, too, with the potential to develop profound advances in fields like geolocation and timekeeping. In this video we examine how the system would work, and the scientific underpinnings of the research effort.


printer friendly page
Solar wind entry at low latitudes
Solar wind entry at low latitudes
Earth’s magnetosphere behaves like a sieve
 
24 October 2012
ESA’s quartet of satellites studying Earth’s magnetosphere, Cluster, has discovered that our protective magnetic bubble lets the solar wind in under a wider range of conditions than previously believed.
 
Earth’s magnetic field is our planet’s first line of defence against the bombardment of the solar wind. This stream of plasma is launched by the Sun and travels across the Solar System, carrying its own magnetic field with it.
Depending on how the solar wind’s interplanetary magnetic field – IMF – is aligned with Earth’s magnetic field, different phenomena can arise in Earth’s immediate environment.
One well-known process is magnetic reconnection, where magnetic field lines pointing in opposite directions spontaneously break and reconnect with other nearby field lines. This redirects their plasma load into the magnetosphere, opening the door to the solar wind and allowing it to reach Earth.
Under certain circumstances this can drive ‘space weather’, generating spectacular aurorae, interrupting GPS signals and affecting terrestrial power systems.  

Solar wind entry at high latitudes
Solar wind entry at high latitudes
In 2006, Cluster made the surprising discovery that huge, 40 000 km swirls of plasma along the boundary of the magnetosphere – the magnetopause – could allow the solar wind to enter, even when Earth’s magnetic field and the IMF are aligned.
These swirls were found at low, equatorial latitudes, where the magnetic fields were most closely aligned.
These giant vortices are driven by a process known as the Kelvin–Helmholtz (KH) effect, which can occur anywhere in nature when two adjacent flows slip past each other at different speeds.
Examples include waves whipped up by wind sliding across the surface of the ocean, or in atmospheric clouds.
Analysis of Cluster data has now found that KH waves can also occur at a wider range of magnetopause locations and when the IMF is arranged in a number of other configurations, providing a mechanism for the continuous transport of the solar wind into Earth’s magnetosphere.
“We found that when the interplanetary magnetic field is westward or eastward, magnetopause boundary layers at higher latitude become most subject to KH instabilities, regions quite distant from previous observations of these waves,” says Kyoung-Joo Hwang of NASA’s Goddard Space Flight Center and lead author of the paper published in the Journal of Geophysical Research.
“In fact, it’s very hard to imagine a situation where solar wind plasma could not leak into the magnetosphere, since it is not a perfect magnetic bubble.”
The findings confirm theoretical predictions and are reproduced by simulations presented by the authors of the new study.
“The solar wind can enter the magnetosphere at different locations and under different magnetic field conditions that we hadn’t known about before,” says co-author Melvyn Goldstein, also from Goddard Space Flight Center.
“That suggests there is a ‘sieve-like’ property of the magnetopause in allowing the solar wind to continuously flow into the magnetosphere.”
The KH effect is also seen in the magnetospheres of Mercury and Saturn, and the new results suggest that it may provide a possible continuous entry mechanism of solar wind into those planetary magnetospheres, too.
“Cluster’s observations of these boundary waves have provided a great advance on our understanding of solar wind – magnetosphere interactions, which are at the heart of space weather research,” says Matt Taylor, ESA’s Cluster project scientist.
“In this case, the relatively small separation of the four Cluster satellites as they passed through the high-latitude dayside magnetopause provided a microscopic look at the processes ripping open the magnetopause and allowing particles from the Sun direct entry into the atmosphere.”

Saturday, October 20, 2012





printer friendly page

ESA Science Programme’s new small satellite will study super-Earths
19 October 2012
PR 35 2012 - Studying planets around other stars will be the focus of the new small Science Programme mission, Cheops, ESA announced today. Its launch is expected in 2017.

Cheops – for CHaracterising ExOPlanets Satellite – will target nearby, bright stars already known to have planets orbiting around them.Through high-precision monitoring of the star’s brightness, scientists will search for the telltale signs of a ‘transit’ as a planet passes briefly across its face.
In turn, this will allow an accurate measurement of the radius of the planet. For those planets with a known mass, the density will be revealed, providing an indication of the internal structure.
These key parameters will help scientists to understand the formation of planets from a few times the mass of the Earth – ‘super-Earths’ – up to Neptune-sized worlds.
It will also identify planets with significant atmospheres and constrain the migration of planets during the formation and evolution of their parent systems.


Planet transit in front of a star
Planet transit in front of a star
Cheops is the first of a possible new class of small missions to be developed as part of ESA’s Science Programme.
“By concentrating on specific known exoplanet host stars, Cheops will enable scientists to conduct comparative studies of planets down to the mass of Earth with a precision that simply cannot be achieved from the ground,” said Professor Alvaro Giménez-Cañete, ESA Director of Science and Robotic Exploration.
“The mission was selected from 26 proposals submitted in response to the Call for Small Missions in March, highlighting the strong interest of the scientific community in dedicated, quick-turnaround missions focusing on key open issues in space science.”
Possible future small missions in the Science Programme should be low cost and rapidly developed, in order to offer greater flexibility in response to new ideas from the scientific community.
With a dedicated science focus, they would provide a natural complement to the broader Medium- and Large-class missions of ESA’s Science Programme.
Cheops will be implemented as a partnership between ESA and Switzerland, with a number of other ESA Member States delivering substantial contributions.
“This continues the 40-year success story of Swiss scientists and industry at the forefront of space science,” said Professor Willy Benz, Center for Space and Habitability at the University of Bern.
The mission will also provide unique targets for more detailed studies of exoplanet atmospheres by the next generation of telescopes now being built, such as the ground-based European Extremely Large Telescope and the NASA/ESA/CSA James Webb Space Telescope.
Cheops will operate in a Sun-synchronous low-Earth orbit at an altitude of 800 km. It has a planned mission lifetime of 3.5 years and part of the observing time will be open to the wider scientific community.

For further information, please contact:
ESA Media Relations Office

Communication Department

Tel: + 33 1 53 69 72 99

Fax: + 33 1 53 69 76 90

Email: media@esa.int


Thursday, October 18, 2012





Higgs Boson Update From CERN




For a report on ABC's Catalyst program (http://www.abc.net.au/catalyst/), I visited the Large Hadron Collider in Switzerland to find out what is being done now that the Higgs Boson has been discovered.

Although its mass has been measured around 125-126 GeV most of the other properties of the particle remain unknown. Its spin appears to be 0 or 2 but more results are required to nail this down. If it is the standard model Higgs, the spin should be 0, resulting in a fairly symmetric distribution of decay products in the detectors.

We may know this year if it's not the standard model Higgs - this would be the case if it doesn't decay into specific particles with the expected frequency. However if it is the standard model Higgs, it may take many more years to be certain. The large hadron collider will be shut down in 2013 for upgrades so that higher energies up to 14 TeV can be tested. Right now the LHC is operating at 8 TeV. The next announcement is expected in December.A

Wednesday, October 17, 2012

Integral: a decade revealing the high-energy sky
 
17 October 2012
ESA’s Integral, the most sensitive gamma-ray observatory ever launched, today celebrates ten years of observations. From rare breeds of stars to the feeding habits of black holes, the mission has been uncovering the secrets of the most energetic phenomena in the Universe.
 
Galactic Centre through Integral’s eyes  
 
The central region of our Milky Way, the Galactic Bulge, is a rich host of variable high-energy X-ray and gamma-ray sources. Thanks to regular observations by Integral over the last ten years, this dynamic environment has been charted in extensive detail, as revealed in this special anniversary video.
A number of these sources, which include X-ray binary systems with a black hole or a neutron star, pulsars and remnants of supernova explosions, only shine brightly for a limited period of time. In some cases, they appear as a sudden bright flash and disappear shortly afterwards, whereas others are more persistent.
The effect of this constantly changing environment gives the Galactic Bulge the appearance of a dramatic cosmic light show.
 

Integral highlights

Integral has uncovered a wealth of new data in its ten years of operations. It has for the first time mapped the entire sky at the specific energy produced by the annihilation of electrons with their positron anti-particles.
According to the gamma-ray emission seen by Integral, some 15 million trillion trillion trillion pairs of electrons and positrons – that’s 15 followed by 42 zeros – are being annihilated every second near the Galactic Centre.
The power released corresponds to over six thousand times the luminosity of our Sun.
While electrons are ubiquitous, it is unknown what produces this huge number of their antimatter counterparts.
Likely candidates are supernovas, accreting binary stars, massive stars and pulsars, but exotic sources such as our Galaxy’s supermassive black hole, gamma-ray bursts or dark matter particles could also be contributing.
 

Integral science highlights
 
 
One nearby black-hole binary, Cygnus X-1, is currently in the process of ripping a companion star to pieces and gorging on its gas.
Studying this extremely hot matter just a millisecond before it plunges into the jaws of the black hole, Integral has found that some of it might be making a high-speed getaway thanks to structured magnetic field lines acting as an escape tunnel.
High-speed escapes have also been seen at the Crab Nebula, the remains of a supernova explosion seen from Earth in 1054, and which hosts a pulsar at its heart.
Until Integral began studying these rapidly spinning neutron stars it was uncertain exactly how they accelerate particles to enormous energies exceeding those from even the most powerful man-made particle accelerators on Earth, like CERN’s Large Hadron Collider.
By studying the polarisation – alignment – of the waves of high-energy radiation originating from the Crab Nebula, Integral found that the radiation is strongly aligned with the rotation axis of the pulsar.
This implies that a significant fraction of the particles generating the intense radiation must originate from an extremely organised structure very close to the pulsar, perhaps even directly from the powerful jets beaming out from the spinning stellar core.
Christoph Winkler, ESA’s Integral Project Scientist says: “Integral is still playing a major role in modern gamma-ray astronomy even after ten years of operations.
“Future science with Integral might include the characterisation of high-energy radiation from a supernova explosion within our Milky Way, an event that is long overdue.” 








Saturday, October 13, 2012



Private Asteroid-Hunting Space Telescope to Launch in 2017



     
A private space telescope mission that aims to discover 500,000 near-Earth asteroids is technically sound and on track for a 2017 launch, a review panel says.



Venus: Runaway Greenhouse On The Second Planet From The Sun | Video


Although Venus and Earth are nearly twins in size and mass, a pressure cooker atmosphere makes Venus extremely inhospitable. Sulfuric acid clouds swirl about a volcanic surface more than 900° F.

Friday, October 12, 2012

Super-Earth Planet Likely Made of Diamond

Thursday, October 11, 2012


Mars Rock Touched by NASA Curiosity has Surprises
10.11.12
 
Mars rock known as 'Jake Matijevic'This image shows where NASA's Curiosity rover aimed two different instruments to study a rock known as "Jake Matijevic."Image credit: NASA/JPL-Caltech/MSSS
› Full image and caption
› Image gallery

NASA's Mars Science Laboratory imageThis image shows the wall of a scuffmark NASA's Curiosity made in a windblown ripple of Martian sand with its wheel. Image credit: NASA/JPL-Caltech/MSSS
› Full image and caption
PASADENA, Calif. -- The first Martian rock NASA's Curiosity rover has reached out to touch presents a more varied composition than expected from previous missions. The rock also resembles some unusual rocks from Earth's interior.
The rover team used two instruments on Curiosity to study the chemical makeup of the football-size rock called "Jake Matijevic" (matt-EE-oh-vick) The results support some surprising recent measurements and provide an example of why identifying rocks' composition is such a major emphasis of the mission. Rock compositions tell stories about unseen environments and planetary processes.
"This rock is a close match in chemical composition to an unusual but well-known type of igneous rock found in many volcanic provinces on Earth," said Edward Stolper of the California Institute of Technology in Pasadena, who is a Curiosity co-investigator. "With only one Martian rock of this type, it is difficult to know whether the same processes were involved, but it is a reasonable place to start thinking about its origin."
On Earth, rocks with composition like the Jake rock typically come from processes in the planet's mantle beneath the crust, from crystallization of relatively water-rich magma at elevated pressure.
Jake was the first rock analyzed by the rover's arm-mounted Alpha Particle X-Ray Spectrometer (APXS) instrument and about the thirtieth rock examined by the Chemistry and Camera (ChemCam) instrument. Two penny-size spots on Jake were analyzed Sept. 22 by the rover's improved and faster version of earlier APXS devices on all previous Mars rovers, which have examined hundreds of rocks. That information has provided scientists a library of comparisons for what Curiosity sees.
"Jake is kind of an odd Martian rock," said APXS Principal Investigator Ralf Gellert of the University of Guelph in Ontario, Canada. "It's high in elements consistent with the mineral feldspar, and low in magnesium and iron."
ChemCam found unique compositions at each of 14 target points on the rock, hitting different mineral grains within it.
"ChemCam had been seeing compositions suggestive of feldspar since August, and we're getting closer to confirming that now with APXS data, although there are additional tests to be done," said ChemCam Principal Investigator Roger Wiens (WEENS) of Los Alamos National Laboratory in New Mexico.
Examination of Jake included the first comparison on Mars between APXS results and results from checking the same rock with ChemCam, which shoots laser pulses from the top of the rover's mast.
The wealth of information from the two instruments checking chemical elements in the same rock is just a preview. Curiosity also carries analytical laboratories inside the rover to provide other composition information about powder samples from rocks and soil. The mission is progressing toward getting the first soil sample into those analytical instruments during a "sol," or Martian day.
"Yestersol, we used Curiosity's first perfectly scooped sample for cleaning the interior surfaces of our 150-micron sample-processing chambers. It's our version of a Martian carwash," said Chris Roumeliotis (room-eel-ee-OH-tiss), lead turret rover planner at NASA's Jet Propulsion Laboratory in Pasadena, Calif.
Before proceeding, the team carefully studied the material for scooping at a sandy patch called "Rocknest," where Curiosity is spending about three weeks.
"That first sample was perfect, just the right particle-size distribution," said JPL's Luther Beegle, Curiosity sampling-system scientist. "We had a lot of steps to be sure it was safe to go through with the scooping and cleaning."
Following the work at Rocknest, the rover team plans to drive Curiosity about 100 yards eastward and select a rock in that area as the first target for using the drill.
During a two-year prime mission, researchers will use Curiosity's 10 instruments to assess whether the study area ever has offered environmental conditions favorable for microbial life. JPL, a division of Caltech, manages the project and built Curiosity. For more about the Mars Science Laboratory Curiosity rover mission, visit: http://www.nasa.gov/msl andhttp://mars.jpl.nasa.gov/msl .
You can follow the mission on Facebook and Twitter at: http://www.facebook.com/marscuriosity andhttp://www.twitter.com/marscuriosity .